3.1170 \(\int \frac{\cos ^4(c+d x) \sin (c+d x)}{\sqrt{a+b \sin (c+d x)}} \, dx\)

Optimal. Leaf size=283 \[ \frac{4 \cos (c+d x) \sqrt{a+b \sin (c+d x)} \left (a \left (32 a^2-33 b^2\right )-3 b \left (8 a^2-7 b^2\right ) \sin (c+d x)\right )}{315 b^4 d}-\frac{8 a \left (-65 a^2 b^2+32 a^4+33 b^4\right ) \sqrt{\frac{a+b \sin (c+d x)}{a+b}} F\left (\frac{1}{2} \left (c+d x-\frac{\pi }{2}\right )|\frac{2 b}{a+b}\right )}{315 b^5 d \sqrt{a+b \sin (c+d x)}}+\frac{8 \left (-57 a^2 b^2+32 a^4+21 b^4\right ) \sqrt{a+b \sin (c+d x)} E\left (\frac{1}{2} \left (c+d x-\frac{\pi }{2}\right )|\frac{2 b}{a+b}\right )}{315 b^5 d \sqrt{\frac{a+b \sin (c+d x)}{a+b}}}-\frac{2 \cos ^3(c+d x) (8 a-7 b \sin (c+d x)) \sqrt{a+b \sin (c+d x)}}{63 b^2 d} \]

[Out]

(-2*Cos[c + d*x]^3*(8*a - 7*b*Sin[c + d*x])*Sqrt[a + b*Sin[c + d*x]])/(63*b^2*d) + (8*(32*a^4 - 57*a^2*b^2 + 2
1*b^4)*EllipticE[(c - Pi/2 + d*x)/2, (2*b)/(a + b)]*Sqrt[a + b*Sin[c + d*x]])/(315*b^5*d*Sqrt[(a + b*Sin[c + d
*x])/(a + b)]) - (8*a*(32*a^4 - 65*a^2*b^2 + 33*b^4)*EllipticF[(c - Pi/2 + d*x)/2, (2*b)/(a + b)]*Sqrt[(a + b*
Sin[c + d*x])/(a + b)])/(315*b^5*d*Sqrt[a + b*Sin[c + d*x]]) + (4*Cos[c + d*x]*Sqrt[a + b*Sin[c + d*x]]*(a*(32
*a^2 - 33*b^2) - 3*b*(8*a^2 - 7*b^2)*Sin[c + d*x]))/(315*b^4*d)

________________________________________________________________________________________

Rubi [A]  time = 0.452864, antiderivative size = 283, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 29, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.207, Rules used = {2865, 2752, 2663, 2661, 2655, 2653} \[ \frac{4 \cos (c+d x) \sqrt{a+b \sin (c+d x)} \left (a \left (32 a^2-33 b^2\right )-3 b \left (8 a^2-7 b^2\right ) \sin (c+d x)\right )}{315 b^4 d}-\frac{8 a \left (-65 a^2 b^2+32 a^4+33 b^4\right ) \sqrt{\frac{a+b \sin (c+d x)}{a+b}} F\left (\frac{1}{2} \left (c+d x-\frac{\pi }{2}\right )|\frac{2 b}{a+b}\right )}{315 b^5 d \sqrt{a+b \sin (c+d x)}}+\frac{8 \left (-57 a^2 b^2+32 a^4+21 b^4\right ) \sqrt{a+b \sin (c+d x)} E\left (\frac{1}{2} \left (c+d x-\frac{\pi }{2}\right )|\frac{2 b}{a+b}\right )}{315 b^5 d \sqrt{\frac{a+b \sin (c+d x)}{a+b}}}-\frac{2 \cos ^3(c+d x) (8 a-7 b \sin (c+d x)) \sqrt{a+b \sin (c+d x)}}{63 b^2 d} \]

Antiderivative was successfully verified.

[In]

Int[(Cos[c + d*x]^4*Sin[c + d*x])/Sqrt[a + b*Sin[c + d*x]],x]

[Out]

(-2*Cos[c + d*x]^3*(8*a - 7*b*Sin[c + d*x])*Sqrt[a + b*Sin[c + d*x]])/(63*b^2*d) + (8*(32*a^4 - 57*a^2*b^2 + 2
1*b^4)*EllipticE[(c - Pi/2 + d*x)/2, (2*b)/(a + b)]*Sqrt[a + b*Sin[c + d*x]])/(315*b^5*d*Sqrt[(a + b*Sin[c + d
*x])/(a + b)]) - (8*a*(32*a^4 - 65*a^2*b^2 + 33*b^4)*EllipticF[(c - Pi/2 + d*x)/2, (2*b)/(a + b)]*Sqrt[(a + b*
Sin[c + d*x])/(a + b)])/(315*b^5*d*Sqrt[a + b*Sin[c + d*x]]) + (4*Cos[c + d*x]*Sqrt[a + b*Sin[c + d*x]]*(a*(32
*a^2 - 33*b^2) - 3*b*(8*a^2 - 7*b^2)*Sin[c + d*x]))/(315*b^4*d)

Rule 2865

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.)
 + (f_.)*(x_)]), x_Symbol] :> Simp[(g*(g*Cos[e + f*x])^(p - 1)*(a + b*Sin[e + f*x])^(m + 1)*(b*c*(m + p + 1) -
 a*d*p + b*d*(m + p)*Sin[e + f*x]))/(b^2*f*(m + p)*(m + p + 1)), x] + Dist[(g^2*(p - 1))/(b^2*(m + p)*(m + p +
 1)), Int[(g*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^m*Simp[b*(a*d*m + b*c*(m + p + 1)) + (a*b*c*(m + p + 1
) - d*(a^2*p - b^2*(m + p)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && NeQ[a^2 - b^2,
0] && GtQ[p, 1] && NeQ[m + p, 0] && NeQ[m + p + 1, 0] && IntegerQ[2*m]

Rule 2752

Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(b*c
 - a*d)/b, Int[1/Sqrt[a + b*Sin[e + f*x]], x], x] + Dist[d/b, Int[Sqrt[a + b*Sin[e + f*x]], x], x] /; FreeQ[{a
, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]

Rule 2663

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2661

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, (2*b)
/(a + b)])/(d*Sqrt[a + b]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2655

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2653

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*Sqrt[a + b]*EllipticE[(1*(c - Pi/2 + d*x)
)/2, (2*b)/(a + b)])/d, x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rubi steps

\begin{align*} \int \frac{\cos ^4(c+d x) \sin (c+d x)}{\sqrt{a+b \sin (c+d x)}} \, dx &=-\frac{2 \cos ^3(c+d x) (8 a-7 b \sin (c+d x)) \sqrt{a+b \sin (c+d x)}}{63 b^2 d}+\frac{4 \int \frac{\cos ^2(c+d x) \left (-\frac{a b}{2}-\frac{1}{2} \left (8 a^2-7 b^2\right ) \sin (c+d x)\right )}{\sqrt{a+b \sin (c+d x)}} \, dx}{21 b^2}\\ &=-\frac{2 \cos ^3(c+d x) (8 a-7 b \sin (c+d x)) \sqrt{a+b \sin (c+d x)}}{63 b^2 d}+\frac{4 \cos (c+d x) \sqrt{a+b \sin (c+d x)} \left (a \left (32 a^2-33 b^2\right )-3 b \left (8 a^2-7 b^2\right ) \sin (c+d x)\right )}{315 b^4 d}+\frac{16 \int \frac{a b \left (2 a^2-3 b^2\right )+\frac{1}{4} \left (32 a^4-57 a^2 b^2+21 b^4\right ) \sin (c+d x)}{\sqrt{a+b \sin (c+d x)}} \, dx}{315 b^4}\\ &=-\frac{2 \cos ^3(c+d x) (8 a-7 b \sin (c+d x)) \sqrt{a+b \sin (c+d x)}}{63 b^2 d}+\frac{4 \cos (c+d x) \sqrt{a+b \sin (c+d x)} \left (a \left (32 a^2-33 b^2\right )-3 b \left (8 a^2-7 b^2\right ) \sin (c+d x)\right )}{315 b^4 d}+\frac{\left (4 \left (32 a^4-57 a^2 b^2+21 b^4\right )\right ) \int \sqrt{a+b \sin (c+d x)} \, dx}{315 b^5}-\frac{\left (4 a \left (32 a^4-65 a^2 b^2+33 b^4\right )\right ) \int \frac{1}{\sqrt{a+b \sin (c+d x)}} \, dx}{315 b^5}\\ &=-\frac{2 \cos ^3(c+d x) (8 a-7 b \sin (c+d x)) \sqrt{a+b \sin (c+d x)}}{63 b^2 d}+\frac{4 \cos (c+d x) \sqrt{a+b \sin (c+d x)} \left (a \left (32 a^2-33 b^2\right )-3 b \left (8 a^2-7 b^2\right ) \sin (c+d x)\right )}{315 b^4 d}+\frac{\left (4 \left (32 a^4-57 a^2 b^2+21 b^4\right ) \sqrt{a+b \sin (c+d x)}\right ) \int \sqrt{\frac{a}{a+b}+\frac{b \sin (c+d x)}{a+b}} \, dx}{315 b^5 \sqrt{\frac{a+b \sin (c+d x)}{a+b}}}-\frac{\left (4 a \left (32 a^4-65 a^2 b^2+33 b^4\right ) \sqrt{\frac{a+b \sin (c+d x)}{a+b}}\right ) \int \frac{1}{\sqrt{\frac{a}{a+b}+\frac{b \sin (c+d x)}{a+b}}} \, dx}{315 b^5 \sqrt{a+b \sin (c+d x)}}\\ &=-\frac{2 \cos ^3(c+d x) (8 a-7 b \sin (c+d x)) \sqrt{a+b \sin (c+d x)}}{63 b^2 d}+\frac{8 \left (32 a^4-57 a^2 b^2+21 b^4\right ) E\left (\frac{1}{2} \left (c-\frac{\pi }{2}+d x\right )|\frac{2 b}{a+b}\right ) \sqrt{a+b \sin (c+d x)}}{315 b^5 d \sqrt{\frac{a+b \sin (c+d x)}{a+b}}}-\frac{8 a \left (32 a^4-65 a^2 b^2+33 b^4\right ) F\left (\frac{1}{2} \left (c-\frac{\pi }{2}+d x\right )|\frac{2 b}{a+b}\right ) \sqrt{\frac{a+b \sin (c+d x)}{a+b}}}{315 b^5 d \sqrt{a+b \sin (c+d x)}}+\frac{4 \cos (c+d x) \sqrt{a+b \sin (c+d x)} \left (a \left (32 a^2-33 b^2\right )-3 b \left (8 a^2-7 b^2\right ) \sin (c+d x)\right )}{315 b^4 d}\\ \end{align*}

Mathematica [A]  time = 3.05023, size = 275, normalized size = 0.97 \[ \frac{-b \cos (c+d x) \left (-8 \left (4 a^2 b^2-21 b^4\right ) \cos (2 (c+d x))+880 a^2 b^2-128 a^3 b \sin (c+d x)-512 a^4+202 a b^3 \sin (c+d x)+10 a b^3 \sin (3 (c+d x))+35 b^4 \cos (4 (c+d x))-203 b^4\right )+32 a \left (-65 a^2 b^2+32 a^4+33 b^4\right ) \sqrt{\frac{a+b \sin (c+d x)}{a+b}} F\left (\frac{1}{4} (-2 c-2 d x+\pi )|\frac{2 b}{a+b}\right )-32 \left (-57 a^3 b^2-57 a^2 b^3+32 a^4 b+32 a^5+21 a b^4+21 b^5\right ) \sqrt{\frac{a+b \sin (c+d x)}{a+b}} E\left (\frac{1}{4} (-2 c-2 d x+\pi )|\frac{2 b}{a+b}\right )}{1260 b^5 d \sqrt{a+b \sin (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(Cos[c + d*x]^4*Sin[c + d*x])/Sqrt[a + b*Sin[c + d*x]],x]

[Out]

(-32*(32*a^5 + 32*a^4*b - 57*a^3*b^2 - 57*a^2*b^3 + 21*a*b^4 + 21*b^5)*EllipticE[(-2*c + Pi - 2*d*x)/4, (2*b)/
(a + b)]*Sqrt[(a + b*Sin[c + d*x])/(a + b)] + 32*a*(32*a^4 - 65*a^2*b^2 + 33*b^4)*EllipticF[(-2*c + Pi - 2*d*x
)/4, (2*b)/(a + b)]*Sqrt[(a + b*Sin[c + d*x])/(a + b)] - b*Cos[c + d*x]*(-512*a^4 + 880*a^2*b^2 - 203*b^4 - 8*
(4*a^2*b^2 - 21*b^4)*Cos[2*(c + d*x)] + 35*b^4*Cos[4*(c + d*x)] - 128*a^3*b*Sin[c + d*x] + 202*a*b^3*Sin[c + d
*x] + 10*a*b^3*Sin[3*(c + d*x)]))/(1260*b^5*d*Sqrt[a + b*Sin[c + d*x]])

________________________________________________________________________________________

Maple [B]  time = 1.483, size = 1190, normalized size = 4.2 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^4*sin(d*x+c)/(a+b*sin(d*x+c))^(1/2),x)

[Out]

2/315*(35*b^6*sin(d*x+c)^6-5*a*b^5*sin(d*x+c)^5+128*((a+b*sin(d*x+c))/(a-b))^(1/2)*(-(sin(d*x+c)-1)*b/(a+b))^(
1/2)*(-(1+sin(d*x+c))*b/(a-b))^(1/2)*EllipticF(((a+b*sin(d*x+c))/(a-b))^(1/2),((a-b)/(a+b))^(1/2))*a^5*b-96*((
a+b*sin(d*x+c))/(a-b))^(1/2)*(-(sin(d*x+c)-1)*b/(a+b))^(1/2)*(-(1+sin(d*x+c))*b/(a-b))^(1/2)*EllipticF(((a+b*s
in(d*x+c))/(a-b))^(1/2),((a-b)/(a+b))^(1/2))*a^4*b^2-260*((a+b*sin(d*x+c))/(a-b))^(1/2)*(-(sin(d*x+c)-1)*b/(a+
b))^(1/2)*(-(1+sin(d*x+c))*b/(a-b))^(1/2)*EllipticF(((a+b*sin(d*x+c))/(a-b))^(1/2),((a-b)/(a+b))^(1/2))*a^3*b^
3+180*((a+b*sin(d*x+c))/(a-b))^(1/2)*(-(sin(d*x+c)-1)*b/(a+b))^(1/2)*(-(1+sin(d*x+c))*b/(a-b))^(1/2)*EllipticF
(((a+b*sin(d*x+c))/(a-b))^(1/2),((a-b)/(a+b))^(1/2))*a^2*b^4+132*((a+b*sin(d*x+c))/(a-b))^(1/2)*(-(sin(d*x+c)-
1)*b/(a+b))^(1/2)*(-(1+sin(d*x+c))*b/(a-b))^(1/2)*EllipticF(((a+b*sin(d*x+c))/(a-b))^(1/2),((a-b)/(a+b))^(1/2)
)*a*b^5-84*((a+b*sin(d*x+c))/(a-b))^(1/2)*(-(sin(d*x+c)-1)*b/(a+b))^(1/2)*(-(1+sin(d*x+c))*b/(a-b))^(1/2)*Elli
pticF(((a+b*sin(d*x+c))/(a-b))^(1/2),((a-b)/(a+b))^(1/2))*b^6-128*((a+b*sin(d*x+c))/(a-b))^(1/2)*(-(sin(d*x+c)
-1)*b/(a+b))^(1/2)*(-(1+sin(d*x+c))*b/(a-b))^(1/2)*EllipticE(((a+b*sin(d*x+c))/(a-b))^(1/2),((a-b)/(a+b))^(1/2
))*a^6+356*((a+b*sin(d*x+c))/(a-b))^(1/2)*(-(sin(d*x+c)-1)*b/(a+b))^(1/2)*(-(1+sin(d*x+c))*b/(a-b))^(1/2)*Elli
pticE(((a+b*sin(d*x+c))/(a-b))^(1/2),((a-b)/(a+b))^(1/2))*a^4*b^2-312*((a+b*sin(d*x+c))/(a-b))^(1/2)*(-(sin(d*
x+c)-1)*b/(a+b))^(1/2)*(-(1+sin(d*x+c))*b/(a-b))^(1/2)*EllipticE(((a+b*sin(d*x+c))/(a-b))^(1/2),((a-b)/(a+b))^
(1/2))*a^2*b^4+84*((a+b*sin(d*x+c))/(a-b))^(1/2)*(-(sin(d*x+c)-1)*b/(a+b))^(1/2)*(-(1+sin(d*x+c))*b/(a-b))^(1/
2)*EllipticE(((a+b*sin(d*x+c))/(a-b))^(1/2),((a-b)/(a+b))^(1/2))*b^6+8*a^2*b^4*sin(d*x+c)^4-112*b^6*sin(d*x+c)
^4-16*a^3*b^3*sin(d*x+c)^3+34*a*b^5*sin(d*x+c)^3-64*a^4*b^2*sin(d*x+c)^2+98*a^2*b^4*sin(d*x+c)^2+77*b^6*sin(d*
x+c)^2+16*a^3*b^3*sin(d*x+c)-29*a*b^5*sin(d*x+c)+64*a^4*b^2-106*a^2*b^4)/b^6/cos(d*x+c)/(a+b*sin(d*x+c))^(1/2)
/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cos \left (d x + c\right )^{4} \sin \left (d x + c\right )}{\sqrt{b \sin \left (d x + c\right ) + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4*sin(d*x+c)/(a+b*sin(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(cos(d*x + c)^4*sin(d*x + c)/sqrt(b*sin(d*x + c) + a), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\cos \left (d x + c\right )^{4} \sin \left (d x + c\right )}{\sqrt{b \sin \left (d x + c\right ) + a}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4*sin(d*x+c)/(a+b*sin(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral(cos(d*x + c)^4*sin(d*x + c)/sqrt(b*sin(d*x + c) + a), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**4*sin(d*x+c)/(a+b*sin(d*x+c))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cos \left (d x + c\right )^{4} \sin \left (d x + c\right )}{\sqrt{b \sin \left (d x + c\right ) + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4*sin(d*x+c)/(a+b*sin(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(cos(d*x + c)^4*sin(d*x + c)/sqrt(b*sin(d*x + c) + a), x)